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Abstract
Mitochondrial DNA (mtDNA) has many similarities with bacterial DNA because
of their shared common ancestry. Increasing evidence demonstrates mtDNA to
be a potent danger signal that is recognised by the innate immune system and
can directly modulate the inflammatory response. In humans, elevated
circulating mtDNA is found in conditions with significant tissue injury such as
trauma and sepsis and increasingly in chronic organ-specific and systemic
illnesses such as steatohepatitis and systemic lupus erythematosus. In this
review, we examine our current understanding of mtDNA-mediated
inflammation and how the mechanisms regulating mitochondrial homeostasis
and mtDNA release represent exciting and previously under-recognised
important factors in many human inflammatory diseases, offering many new
translational opportunities.
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Introduction
Mitochondria are intracellular double-membrane-bound organelles 
(“cellular powerhouses”) with many essential physiological roles 
in energy production, programmed cell death, calcium homeosta-
sis, and the synthesis of lipids, amino acids, and haem. In addition, 
they are involved in antibacterial, antiviral, and stress responses 
to hypoxia and tissue injury1,2. Mitochondria are evolutionarily  
derived from energy-producing alpha-bacteria, engulfed by  
archezoan cells approximately 2 billion years ago leading to 
a symbiotic relationship that forms the basis of the eukaryotic  
cells3. The mitochondria share several features with bacteria, 
including the double-membrane structure, a circular genome that 
replicates independently of nuclear DNA, and the synthesis of 
N-formylated proteins4. As the innate immune system recognises 
conserved bacterial molecules, mitochondrial constituents are  
similarly immunogenic, acting as damage-associated molecu-
lar patterns (DAMPs) when released into the cytosol and extra-
cellular environment, triggering innate immune responses, and  
promoting inflammation5. In this review, we focus particularly on 
the role of mitochondrial DNA (mtDNA) as a specific inflamma-
tory factor, the mechanisms behind its abnormal release, and its  
effects on downstream inflammatory pathways in human inflam-
matory diseases.

Elevated circulating mtDNA in human diseases
Freely circulating mtDNA can be detected, and over 60 studies  
have quantified mtDNA by quantitative polymerase chain reac-
tion (PCR) in plasma and serum in human diseases (Table 1). In 
general, they are increased in conditions with acute tissue injury 
such as trauma, acute myocardial infarction, and sepsis, implicat-
ing major cellular stress and uncontrolled cell death as key factors 
in the release of mtDNA (Figure 1). In cancer, where its role as  
“liquid biopsies” is a topic of considerable interest, the pattern is 
less clear, and relatively lower circulating levels are found in some 
cancers6.

Systemic inflammatory response syndrome
Systemic inflammatory response syndrome (SIRS) is a serious 
condition associated with high mortality, and affected individuals 
display progressive signs or symptoms of systemic upset reflect-
ing widespread inflammation, often involving multiple organ 
dysfunction and failure (for example, lungs, kidneys, and brain). 
SIRS is often a result of major sepsis but also commonly occurs in 
the context of injury such as trauma. An early study by Lam et al. 
 found that individuals admitted for blunt traumatic injury had 
increased plasma nuclear DNA and mtDNA levels7. Subsequently,  
Hauser et al. made the seminal observation that it is the freely  
circulating mtDNA following traumatic injury which possesses 
the distinct ability to trigger and drive the clinical manifestation 
of SIRS8. Several studies have confirmed the observation of ele-
vated plasma mtDNA in trauma and SIRS9–15. A number of studies  
have found correlations with injury severity in trauma7,11 and higher 
mtDNA in non-survivors compared with survivors11,15. Furthermore, 
Gu et al. found that elevated plasma mtDNA was an independent 
predictor of SIRS in trauma patients12. In sepsis, elevated levels of 
circulating mtDNA have also been found in multiple studies11,16–21. 
De Caro et al. found higher mtDNA in the plasma of critically ill 
paediatric patients who were septic compared with similarly unwell 

but non-septic patients21. The one negative study in sepsis may be 
explained by numerous factors, including a relatively well patient 
cohort, only one “spot” measurement being taken at presentation, 
and the potentially confounding factor of cellular content/debris22. 
Studies of patients in the intensive care setting have found that 
higher mtDNA levels are associated with poorer outcomes23,24.

Acute single-organ injury: liver, heart, and brain
High levels of mtDNA are present in the serum and plasma of 
patients with acute injury to a variety of single organs. Aceta-
minophen overdose induces massive hepatocyte necrosis and in 
severe cases can lead to multi-organ failure and remains one of 
the commonest indications for liver transplantation. In fulminant 
liver failure secondary to acetaminophen overdose, mtDNA in the 
serum was found to be 30 to 40 times higher than normal, and non-
survivors had higher levels than survivors25; a separate study of 
drug-induced acute liver failure found serum mtDNA levels to be  
10,000-fold higher26. Serum mtDNA of acetaminophen overdose 
patients with derangement in the liver enzyme alanine aminotrans-
ferase (a marker of hepatocyte damage) is significantly higher 
than that of overdose patients who had normal liver enzymes27, 
suggesting that the extent of mtDNA release into the circulation 
depends on the extent of hepatocyte necrosis. Similarly, extensive  
cardiomyocyte necrosis is found in acute myocardial infarc-
tion, which is also associated with elevated mtDNA in multiple  
studies28–30 and falls after angioplasty or coronary stent insertion 
to restore blood flow to the damaged myocardium28,29. Patients 
with diabetes mellitus and coronary artery disease have higher 
mtDNA levels than those with diabetes but without coronary artery  
disease31,32. mtDNA is also higher in acute cerebral ischaemia, 
caused by a reduction in cerebral blood flow by embolus or local 
thrombosis, and plasma levels gradually drop over time after the 
initial tissue injury33. Interestingly, studies by the same group  
relating to plasma mtDNA in subarachnoid haemorrhage and  
spontaneous intracerebral haemorrhage found no significant dif-
ference compared with healthy controls, although both were  
small studies34,35. Higher mtDNA is found in the cerebrospinal fluid 
of patients with subarachnoid haemorrhage34 and traumatic brain 
injury36 and is associated with worse clinical outcomes. Overall, 
in these conditions, significant mtDNA release following massive  
tissue or cellular injury is evident and likely contributes to the 
uncontrolled inflammatory response25.

Chronic inflammatory and immune-mediated diseases
The role for mtDNA in immune-mediated inflammatory diseases, 
unlike conditions relating to injury, is now also emerging. In rheu-
matoid arthritis, a chronic relapsing autoimmune condition affect-
ing the joints, mtDNA was present in the plasma and synovial fluid 
of most patients but undetectable in healthy controls37. Similarly, 
higher plasma mtDNA is found in granulomatosis with poly-
angiitis, an autoimmune disease whose features include necrotis-
ing granulomatous inflammation and vasculitis38. Systemic lupus  
erythematosus (SLE) is a multi-organ autoimmune disease with 
hallmarks including excessive type I interferon (IFN) and antibodies 
against nucleic acids. Caielli et al. explored the potential pathogenic 
importance of oxidised mtDNA in SLE39. They showed that there is 
a defect in mitochondrial clearance that leads to abnormal extrusion 
of oxidised mtDNA, which triggers a subsequent interferogenic 
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Table 1. Circulating mitochondrial DNA in human disease.

Disease 
category

Disease Blood 
fraction

Finding Reference(s)

Trauma Trauma Plasma High mtDNA levels in trauma compared with HCs and correlated 
with injury severity

7

Trauma Plasma High mtDNA levels in trauma 8,9 

Trauma with MODS Plasma Higher levels of mtDNA had higher relative risk for mortality 
Higher levels of mtDNA in those with SIRS/MODS compared with 
those without

10

Trauma and severe 
sepsis

Plasma mtDNA higher in patients with trauma compared with HCs on day 
1 
mtDNA correlates with injury severity scores in trauma patients 
mtDNA higher on day 1 in non-survivors compared with survivors

11 

Post-traumatic SIRS Plasma mtDNA is an independent predictor for post-traumatic SIRS 12 

Trauma Plasma mtDNA higher in trauma patients with correlation with injury 
severity

7 

Trauma (femur 
fracture)

Plasma mtDNA higher in trauma patients than HCs 13 

Trauma Plasma mtDNA higher in trauma patients compared with HCs at two time 
points (pre-hospital and day 1)

14 

Trauma Plasma mtDNA higher in trauma patients than HCs 
mtDNA higher in non-survivors compared with survivors

15 

Sepsis Severe sepsis Plasma mtDNA higher in patients with severe sepsis compared with HCs 
No significant difference in mtDNA between non-survivors and 
survivors in severe sepsis

11 

Severe sepsis in 
the ED

Plasma mtDNA higher on admission in severe septic patients than in HCs 
mtDNA is higher in non-survivors than in survivors, increases 
initially and gradually decreases after antimicrobial therapy, and is 
an independent predictor of fatality

16 

Sepsis Plasma mtDNA higher in septic patients compared with HCs 17 

Septic shock Plasma mtDNA higher in patients with septic shock 18 

Adult community-
acquired bacterial 
meningitis

Plasma mtDNA levels were higher in patients with aseptic or bacterial 
meningitis compared with HCs 
mtDNA levels fall during course of admission 
High mtDNA levels associated with poorer outcome in adult 
community-acquired bacterial meningitis

19 

Infectious SIRS Plasma mtDNA higher in septic patients compared with HCs 20 

Paediatric sepsis Plasma mtDNA higher in septic patients compared with critically ill non-
septic and HC patients

21 

Severe sepsis in 
the ED

Plasma No significant difference in mtDNA between sepsis and HC 
cohorts

22 

Critically ill 
patients

ICU patients Plasma Increased mtDNA levels associated with medical ICU mortality 23 

Critically ill patients 
(in the ICU)

Plasma Patients with highest quartile of mtDNA in plasma had higher risk 
of dying 
When stratified by TLR9 expression, only patients with high 
expression of TLR9 had an association with mortality and mtDNA 
level

24 

Out-of-hospital 
cardiac arrest

Plasma Significantly higher levels in non-survivors than in survivors 56a

Liver failure Acetaminophen-
induced acute liver 
failure

Serum mtDNA higher in acetaminophen-induced acute liver failure 
patients compared with HCs 
mtDNA higher in non-survivors compared with survivors

25 
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Disease 
category

Disease Blood 
fraction

Finding Reference(s)

Acetaminophen-
induced acute liver 
injury

Plasma mtDNA higher in patients with acetaminophen overdose with 
abnormal liver function tests compared with HCs and those with 
acetaminophen overdose but normal liver function tests

27 

Fulminant liver 
failure

Serum Higher during acute liver injury 26 

Heart disease AMI Plasma Significantly higher mtDNA in ST elevation myocardial infarction 
patients than in stable angina pectoris patients (reducing rapidly 
to similar levels 3 days after PCI)

28 

AMI Plasma Significantly higher levels in AMI patients compared with HCs 
Levels dropped to normal immediately after PCI

29 

AMI Plasma Significantly higher levels in acute AMI patients compared with 
HCs on admission

30 

T2DM with CAD Plasma Significantly elevated levels in T2DM compared with HCs 
Higher levels in those with diabetes mellitus and CAD compared 
with those without CAD 
mtDNA levels correlated with C-reactive protein in patients with 
CAD

31 

T2DM with CAD Plasma Significantly higher levels in CAD patients with T2DM 32 

Heart failure Plasma Higher levels of mtDNA in heart failure patients compared with 
age- and sex-matched HCs; no association with disease severity

110 

Stroke Acute ischaemic 
stroke

Plasma mtDNA levels higher in acute cerebral infarction than in HCs 
No significant difference in mtDNA between good versus poor 
outcome cohorts

33 

Subarachnoid 
haemorrhage

Plasma No significant difference in mtDNA between subarachnoid 
haemorrahge and HC groups 
Overall plasma mtDNA not a good marker of prognosis

34 

Intracerebral 
haemorrhage

Plasma No significant difference in mtDNA between intracerebral 
haemorrhage and HC groups 
No correlation between mtDNA and disease severity

35 

Malignancy Breast cancer Plasma Reduced levels of mtDNA in benign or malignant breast cancer 
compared with HCs

111 

Ovarian cancer Plasma and 
serum

Plasma: significantly higher levels of mtDNA in ovarian cancer 
group compared with HCs and ovarian benign tumour group 
Serum: no significant difference between groups above

112 

Testicular germ cell 
cancer

Serum mtDNA levels were significantly higher in patients with testicular 
cancer than in HCs, although it did not correlate with any 
clinicopathological variable of disease status

113 

Urological 
malignancies

Serum mtDNA were significantly higher in “urological malignancies” 
(bladder cell, renal cell, and prostate cancer)

114 

Prostate cancer Serum mtDNA could not distinguish between benign prostatic 
hypertrophy and prostate cancer 
Patients with early biochemical recurrence after radical 
prostatectomy have higher mtDNA levels

115 

Ewing’s sarcoma Serum mtDNA significantly lower in patients with Ewing’s sarcoma 
compared with HCs

116 

Lung cancer Serum mtDNA significantly higher in lung cancer patients compared 
with those with benign lung diseases and healthy individuals and 
closely associated with tumour, lymph node, metastasis (TNM) 
stage

117 

Advanced prostate 
cancer

Plasma mtDNA levels are elevated in advanced prostate cancer patients 
and are associated with decreased survival

118 

Adenocarcinoma of 
the lung in patients 
receiving erlotinib

Plasma Rise in mtDNA levels in patients with partial response; drop in 
mtDNA levels in those with progressive disease or no response 
No correlation with progression-free survival

119 
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Disease 
category

Disease Blood 
fraction

Finding Reference(s)

Exposure to 
carcinogenic 
halo-alkane-based 
pesticides

Serum Exposure to these carcinogens was significantly associated with 
elevated serum levels of circulating mtDNA (case control study)

120 

Renal cell 
carcinoma

Plasma Higher levels in metastatic compared with non-metastatic patients 
and controls

121 

HIV HIV Plasma Higher levels in acute HIV infection, late presenters compared with 
long-term non-progressors and HCs 
Also correlated with viral load

122 

Lipodystrophy 
in HIV patients 
treated with highly 
active anti-retroviral 
therapy

Plasma Significantly higher levels in HIV-infected versus non-infected 
individuals 
Significantly higher levels in those with lipodystrophy compared 
with those without lipodystrophy at month 24

123 

HIV Plasma No significant association between HIV disease status and mtDNA 124 

Inflammatory 
autoimmune 
conditions

Rheumatoid arthritis Plasma Higher percentage of detectable levels in rheumatoid arthritis 
patients compared with controls

37b

Granulomatosis with 
polyangiitis

Serum Significantly higher levels in granulomatosis with polyangiitis 
patients compared with controls

38 

Age and 
exercise

Age Plasma mtDNA levels increased gradually after the fifth decade of life 125 

Age Plasma No association with age but mtDNA associated with HLA-DR 126 

Aging and “frailty” Plasma Aging: no difference in mtDNA between younger and older 
subjects 
Frailty: mtDNA copy number directly correlated with frailty score

127 

Exercise Plasma Reduced mtDNA in response to exercise 128 

Male volleyball 
players

Plasma Lower levels in professional volleyball players compared with 
healthy non-athlete controls

129 

Miscellaneous Corrosive injury 
(gastrointestinal 
ingestion)

Plasma Significantly higher mtDNA in mortality group versus survival 
group at presentation and after 
12 hours

130 

Pulmonary 
embolism

Plasma Predictor of 15-day mortality 131c

Autism Serum Significantly higher mtDNA in young autistic children compared 
with HCs

132 

Haemodialysis Plasma Significantly higher levels in maintenance haemodialysis patients 
compared with HCs

133 

End-stage renal 
failure in Han 
population

Plasma End-stage renal failure patients had higher mtDNA copy number 134 

Bipolar disorder Serum No difference between bipolar disorder and HC groups 
Higher levels in bipolar disorder group compared with sepsis

135 

Low levels of 
ionising radiation

Serum Higher levels in interventional cardiologists exposed to low levels 
of ionising radiation compared with controls

136 

Friedreich’s ataxia Plasma Significantly reduced mtDNA in Friedreich’s ataxia patients 
compared with HCs

137 

Non-haemolytic 
transfusion reaction

Platelet 
concentrates

Higher mtDNA copy number in non-haemolytic transfusion 
reaction platelet concentrate versus normal platelet concentrate

138 

This table lists studies reporting mitochondrial DNA (mtDNA) analysed by polymerase chain reaction (PCR) on serum or plasma—that is, circulating as a 
damage-associated molecular pattern (DAMP)—in human diseases. aLetter. bPCR rather than quantitative PCR used. cEarlier study in 2010 not included. 
AMI, acute myocardial infarction; CAD, coronary artery disease; ED, emergency department; HC, healthy control; HIV, human immunodeficiency virus; HLA-
DR, human leukocyte antigen–antigen D related; ICU, intensive care unit; MODS, multiple organ dysfunction syndrome; PCI, percutaneous coronary 
intervention; SIRS, systemic inflammatory response syndrome; T2DM, type 2 diabetes mellitus; TLR9, Toll-like receptor 9.
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Figure 1. The contribution of mitochondrial DNA to disease pathogenesis. Medical conditions are in italics. Where and how mitochondria 
are released are indicated in red. Box in dotted line frames mitochondrial DNA (mtDNA) sensor target. cGAS, cyclic GMP-AMP synthetase; 
IFN, interferon; IL, interleukin; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; mtROS, mitochondria-derived 
reactive oxygen species; NET, neutrophil extracellular trap; NFκB, nuclear factor kappa B; pDC, plasmacytoid dendritic cell; SIRS, systemic 
inflammatory response syndrome; SLE, systemic lupus erythematosus; STING, stimulator of interferon genes; TLR9, Toll-like receptor 9.

response. Elevated anti-mtDNA antibodies were found in a sepa-
rate study of SLE, particularly in lupus nephritis, where levels cor-
related with the lupus nephritis activity index better than anti-dou-
ble-stranded DNA (anti-dsDNA) antibody levels did40. In a further 
study of SLE, neutrophil extracellular traps (NETs) released from 
the inflammatory subset of low-density granulocyte were highly 
enriched in mtDNA compared with NETs from healthy control neu-
trophils41. NETs are networks of extracellular fibres that are primarily 
composed of DNA and that are strikingly expelled following a form 
of neutrophil cell death (NETosis) with an aim to control pathogens; 
however, this study demonstrates that mtDNA-enriched NETs are 
pro-inflammatory in nature. Similar findings are reported in chronic 
granulomatous disease in this study. Higher levels of mtDNA have 
been found in the chronic inflammatory states of HIV (although 
not in all studies), end-stage renal failure, and diabetes mellitus  
(Table 1). In obese individuals with steatohepatitis, mitochondria 
enclosed in microparticles can also be detected in plasma42. These 
findings suggest that mtDNA, otherwise a “self-signal”, may be an 
active component in the aberrant immune or inflammatory response 
in chronic diseases and in autoimmunity.

mtDNA contributes to inflammatory response
mtDNA was first directly implicated as a key factor in the devel-
opment of inflammatory pathology over a decade ago when intra-
articular injection of oxidised mtDNA, but not nuclear DNA, 
triggered inflammatory arthritis in mice43. There are now numer-
ous studies using in vivo injection of mtDNA to provoke local or 
systemic inflammation or both9,44–46. Moreover, there are now sev-
eral in vivo studies to show that genetic deletion or pharmacologic  
interference of these pathways reduces the inflammatory effect of 
mtDNA (as will be discussed in the next section). Hence, it is clear 
that mtDNA release is not an epiphenomenon but directly contrib-
utes to the genesis of inflammation (Figure 1). Current evidence 
shows that mtDNA-mediated inflammation is predominantly driven 
by the Toll-like receptor 9 (TLR9), inflammasome, and, more 
recently, stimulator of interferon genes (STING) pathways.

Toll-like receptor 9
TLR9 is located in the endoplasmic reticulum (ER) of various 
immune cells and translocates to the endosome upon sensing of 
hypomethylated DNA with CpG motifs, such as bacterial DNA47,48. 
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Given its high frequency of unmethylated CpG dinucleotide repeats, 
it is postulated that mtDNA mediates inflammation dependent  
on the TLR9 pathway and potentially exerts a similar effect as on 
bacterial CpG. TLR9 recognises a variety of types of oligodeoxy-
nucleotides (ODNs); for example, class A ODNs preferentially 
activate plasmacytoid dendritic cells whilst class B CpG ODNs 
activate B cells49. Some of our understanding of how mtDNA 
may interact with TLR9 is extrapolated from work with class A 
ODNs, although they do not necessarily have the same effect. 
After activation of TLR9 by CpG DNA, inflammatory cytokine  
induction and Th1 immune responses occur50 and TLR9 is neces-
sary in CpG DNA-driven responses51. TLR9 ligands can preferen-
tially activate downstream pathways, including pro-inflammatory 
nuclear factor kappa B (NFκB), nucleotide-bindingdomain and  
leucine-rich repeat (NLR) pyrin domain containing 3 (NLRP3) 
inflammasomes, and interferon regulatory factor (IRF)-dependent 
type 1 IFN, which can upregulate IL-1 receptor antagonist52,53.

Most tissue injury models show better outcomes when the tlr9 
gene is deleted. Wei et al. recently observed that tlr9−/− mice have 
improved survival outcome in a necrotic lung model of cationic 
nanocarrier-induced necrosis and mtDNA release in vivo54. Further-
more, the pulmonary inflammation seen after injection of mtDNA 
was significantly reduced in tlr9−/− and MyD88−/− mice, underlining 
the importance of the TLR9–MyD88 pathway54. Intravenous injec-
tion of mitochondrial debris with substantial amounts of mtDNA 
into mice induced a systemic inflammatory response in wild-type 
mice that was significantly attenuated in tlr9−/− mice45. Tlr9−/− mice 
also have better survival compared with wild-type counterparts in 
severe renal ischaemia reperfusion injury with associated decreased 
circulating mtDNA55. A similar protective effect is seen in tlr9−/− 
mice with acute acetaminophen overdose with observed lower 
serum mtDNA and an absence of lung inflammation in contrast 
to the findings of wild-type mice26. Nevertheless, the reduction in 
mtDNA in tlr9−/− mice is intriguing and could be explained by the 
reduced inflammation with lower resultant cellular necrosis. Alter-
natively, it is possible that TLR9 is somehow involved in mtDNA 
release into the extracellular circulation. In a recent study using a 
murine model of non-alcoholic steatohepatitis (NASH), mtDNA 
from NASH hepatocytes resulted in greater activation of TLR9 
than did mtDNA from control livers42. This suggests that mtDNA 
that is selectively modified during pathologic disease processes can 
augment the ensuing inflammatory response. Similarly, the level of 
TLR9 expression (due to various factors) appears to be important. 
In those with high mtDNA levels, higher TLR9 expression is asso-
ciated with increased mortality in the intensive care unit (ICU), as 
discussed earlier56.

Neutrophils have received the most attention in studies on  
mtDNA–TLR9 signalling in several different inflammatory set-
tings. Zhang et al. found that mtDNA activates neutrophil p38 
mitogen-activated protein kinase (MAPK) through TLR9 with 
release of matrix metalloproteinase 8 (MMP8) and MMP98,9, a find-
ing confirmed in a study in which phosphorylated p38 and MMP9 
increased after mtDNA treatment of neutrophils57. A separate study 
reported similar findings where pre-treatment with TLR9 inhibitor 
ODN2088 inhibited the activation of p38 MAPK and release of 
MMP854. Gu et al. also found that intratracheal administration of 

mtDNA provokes lung inflammation through TLR9–p38 MAPK58. 
Hip fracture in rats resulted in mtDNA release into the circulation 
as well as higher TLR9 and NFκB p65 activation and subsequent 
lung injury46. The role of other MAPKs such as extracellular signal 
-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) 
remains unclear and, to our knowledge, unexamined in this context. 
These data suggest a pathway where mtDNA activates neutrophils 
through TLR9 binding and activation of the MAPK pathway with 
subsequent MMP8 and MMP9 release (Figure 1).

When mtDNA is considered vis-à-vis the site and location of  
TLR9 receptor, mtDNA must be either displaced from whole mito-
chondria and moved into the cytosol or, when extracellular, inter-
nalised by some mechanism(s) to act on endosomal TLR9. The 
endosomal location of TLR9 is most likely a mechanism to avoid 
unwanted activation59. It is unclear how extracellular mtDNA is 
internalised, but possibilities include endocytosis, transmembrane 
diffusion, phagocytosis, and receptor-mediated endocytosis60. 
Transmembrane diffusion is unlikely because of the highly (neg-
atively) charged nature of DNA, which makes it difficult to pass 
through the cellular membrane. A recent study found that monocyte-
derived macrophages can take up whole mitochondria released from 
necroptosis, suggesting that phagocytosis could be a relevant mech-
anism61. The macrophage has a clear role in resolving inflammation 
by clearing up cellular debris and apoptotic bodies by phagocytosis. 
When mitochondria are not cleared during non-apoptotic cell death, 
the macrophage may phagocytose cellular corpses with mtDNA 
still abundantly present. Typically, apoptotic corpses can suppress 
the transcription of pro-inflammatory cytokine genes, promote the 
secretion of anti-inflammatory cytokines by phagocytes, and cause 
antigen-presenting cells to present dead cell antigen in a manner 
that promotes immunological tolerance (reviewed by Zitvogel  
et al.62). It will be of interest to consider the fate of mtDNA when 
macrophages or dendritic cells phagocytose cellular corpses with 
mtDNA. Does this clear the mtDNA or does it regulate subse-
quent functions (for example, immune responsiveness) in these cell  
types? This has yet to be studied in detail. It is also possible that 
binding to additional cofactors facilitates the internalisation into 
immune cells, and, in this instance, high-mobility group box 1 
(HMGB1) and receptor for advanced glycation end products (RAGE) 
have been implicated63. In this study, HMGB1–CpG (class A)  
complexes resulted in TLR9/RAGE association and recruitment 
of MyD88 in B cells63. Here, RAGE was visualised as associat-
ing with the DNA and was internalised with some sequestered 
in endosome-like structures. However, this possible mechanism 
requires further investigation. It has also been proposed that acti-
vation of autoreactive B cells by CpG DNA occurs after B-cell  
receptor engagement, leading to the delivery of CpG DNA to  
endosomal TLR964.

Although nucleic acid-sensing TLRs on immune cells are found 
mainly within cells, cell surface expression has also been described. 
Via flow cytometry, TLR9 has been detected on the surface of 
resting B lymphocytes65,66 and peripheral blood mononuclear  
cells67,68. One functional ex vivo study found primary human and 
mouse TLR9 surface expression in neutrophils, which are upregu-
lated by a variety of stimuli, including TLR9 agonists69. However, 
it remains unclear whether TLR9 is able to signal from the cell  
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surface. In other cell types, TLR9 is also expressed on the cell  
surface. For example, TLR9 is expressed on both the apical and the 
basolateral membranes of intestinal epithelial cells, although NFκB 
is activated only via basolateral stimulation of CpG ligands70,71. 
This is relevant at the gut mucosal interface, as this limits the  
extent of TLR9 activation at the apical surface, which is in con-
tact with a luminal milieu rich with bacterial DNA. Hence, com-
promised intestinal barrier integrity and translocation of bacterial 
CpG from the lumen during gut pathology will lead to basolateral  
stimulation in this context. Whether mtDNA has a different propen-
sity compared with bacterial CpG to trigger TLR9 depending on 
epithelial site has not been studied.

The inflammasome
The inflammasomes are targets of mtDNA leading to cleavage  
and activation of caspase-1 and downstream maturation of inter-
leukin-1β (IL-1β) and IL-1872. Here, it is the cytosolic release of 
mtDNA that exerts the dominant effect on inflammasome activation. 
Of the several inflammasomes described, the NLRP3 inflamma-
some is the best characterised in this regard. Nakahira et al. showed 
that depletion of mtDNA reduced IL-1β secretion in macrophages 
following treatment with known inflammasome triggers lipopoly-
saccharide (LPS) and ATP73. Of interest, mitochondria-derived 
reactive oxygen species (mtROS) is a further key mediator in this 
process. Pharmacologic induction of mtROS correlates with higher 
secretion of active IL-1β in an NLRP3- and caspase-1-dependent 
manner, and treatment with mtROS scavengers suppresses this 
effect74. The requirement for mtROS in NLRP3 activation has 
been confirmed by other studies73,75–77 and may be explained by its 
oxidising effects on mtDNA. Shimada et al. showed that it is the 
oxidised form of mtDNA that confers the inflammatogenic poten-
tial to mtDNA75. mtROS enhances not only the oxidative process 
but also the cytosolic translocation of oxidised mtDNA that then 
binds directly to NLRP375. Non-oxidised mtDNA is insufficient 
to activate the NLRP3 inflammasome, although it may stimulate 
IL-1β production via other inflammasomes such as the absent in 
melanoma 2 (AIM2)78. Interestingly, genetic deletion of NLRP3 
and caspase-1 results in less mtDNA release73,77. This suggests a 
positive-feedback loop, in which activation of the NLRP3 inflam-
masome by oxidised mtDNA further promotes mtDNA release. The 
overwhelming or persisting (or both) ROS production by inflam-
matory cells, for example, is known to damage macromolecules 
(DNA as well as RNA, lipids, carbohydrates, and proteins) of the 
surrounding cells. Activated neutrophils produce large amounts of 
ROS as part of their essential role in host defense79. Hence, this is a 
likely major contributory factor to mtDNA damage once the inflam-
matory process is triggered.

Other factors controlling mitochondria-mediated NLRP3 activa-
tion are also relevant. For example, defective autophagy increases  
caspase-1 activation, IL-1β and IL-18 production, and cytosolic 
mtDNA translocation in LPS- and ATP-primed macrophages76. 
Pharmacological inhibition of mitophagy/autophagy in human 
macrophages results in the accumulation of damaged mitochon-
dria, ROS generation and IL-1β secretion74, and increased NLRP3 
expression in the presence of LPS80. Hence, defective autophagy 
leads to inadequate clearance of damaged mitochondria, priming the 
internal cellular environment for NLRP3 activation. It is noteworthy 

that, given the diversity of NLRP3 activators, current literature sug-
gests that the precise mechanism of NLRP3 activation is still under 
debate81. Although the role of the inflammasome is often considered 
separately from TLR9 here, there is evidence that TLR/NFκB acti-
vation is a necessary priming step leading to NLRP3 upregulation 
and subsequent downstream signalling. NFκB-activating stimulus is 
required for cells to express pro-IL-1β and NLRP382. Imeada et al. 
showed that stimulation of TLR9 by DNA fragments during early 
acetaminophen-induced cell death can lead to the transcriptional 
activation of the IL-1β gene, resulting in the formation of pro-IL-
1β83. Using the acetaminophen hepatotoxicity model, they showed 
that NLRP3 deletion and related inflammasome components ASC 
and Caspase-1 were protective against induced liver failure83. A 
further study, however, did not show any effect of NLRP3 deletion 
on the outcomes of acetaminophen-induced liver failure84. Hence, 
in the context of liver necrosis, the role for NLRP3 inflammasome 
remains controversial.

STING pathway
The role of mtDNA in innate immunity through the STING pathway 
has also been a focus of recent studies. STING is a cytosolic pro-
tein anchored to the ER85. STING can be activated either by direct 
association with dsDNA or by cyclic dinucleotides, which can be 
derived from intracellular bacteria or viruses or produced by a DNA 
sensor, cyclic GMP–AMP (cGAMP) synthetase (cGAS)86. This, in 
turn, activates IRF3, which ultimately translocates to the nucleus 
and transcribes type I IFN genes, and also the NFκB pathway85.

Two independent groups recently discovered that the STING-
mediated IFN response can also be activated by mtDNA87,88.  
They first observed that deficiency of apoptotic caspases (3, 7, 
and 9) resulted in upregulation of type I IFN genes. This response 
was dependent on Bak/Bax, pro-apoptotic proteins responsible 
for mitochondrial outer membrane permeabilisation leading to 
mtDNA release, and the release of cytochrome C, which activates 
the intrinsic apoptotic pathway. Typically, apoptosis is considered 
immunologic-silent; for example, it does not trigger an inflamma-
tory response. However, these studies demonstrated that, when 
caspases (9 and 3/7) responsible for the completion of apoptotic 
process are inhibited or deleted, cytosolic mtDNA goes on to  
activate cGAS/STING-mediated type I IFN signalling87,88. Hence, 
these caspases serve as a “brake” on the mtDNA-inflammatory 
effect during cell death. mtDNA released during cell death has been 
previously reported to provide a second signal that cooperates with 
an additional inflammatory signal (for example, LPS) to activate 
the NLRP3 inflammasome and induce IL-1β production in murine  
macrophages75. Further evidence of an mtDNA role in STING-
mediated IFN responses comes from West et al.89. Here, partial 
deficiency of the mtDNA-binding protein mitochondrial transcrip-
tion factor A (TFAM) was associated with increased concentrations 
of cytosolic mtDNA and enhanced type I IFN response, which was 
attenuated by knockdown of components of the STING pathway.

Aberrant mtDNA–STING signalling has also been implicated in 
human inflammatory diseases, such as SLE. As discussed earlier, 
Lood et al. showed that treatment of human neutrophils with SLE-
abundant ribonucleoprotein immune complexes induces mtROS, 
mtDNA oxidation, and translocation of the mitochondria to the 
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plasma membrane41. Oxidised mtDNA is then released extracel-
lularly as a component of NETs. Transfection of NET-derived 
mtDNA results in expression of IFN-β in human peripheral mono-
nuclear cells. Systemic injection of oxidised mtDNA increases 
IFN-stimulated gene expression in the spleen of wild-type but not 
STING-deficient mice. Similar to inflammasomes, uncontrolled 
mtROS production promoting cytosolic mtDNA release is impor-
tant in STING activation and potentially in the case of autoimmu-
nity. These studies highlight the importance of the innate cellular 
functions to handle mtDNA release during the initiation of cell 
death, which ultimately will decide whether the ensuing fate will be 
that of a silent or inflammatory outcome.

Mechanisms for mtDNA release
Two levels of mtDNA release—cytosolic and then extracellular 
—are critically important steps (Figure 1). In the former, the 
mechanism of release of mtDNA from mitochondria relies on the 
opening of mitochondrial permeability transition (MPT) pores in 
the inner mitochondrial membrane90. Inhibition of pore opening 
with cyclosporine A resulted in lower mtDNA in the cytosol after 
stimulation with LPS and ATP73. Ding et al. showed that the induc-
tion of ROS using oxidised low-density lipoprotein (ox-LDL) 
increased mtDNA leakage into the cytosol in a dose-dependent 
manner, and this effect was ameliorated with blockade of the 
ox-LDL receptor or a ROS inhibitor91.

In terms of extracellular release, cellular stress and necrosis are pri-
mary factors in the non-discriminant liberation of a host of mito-
chondrial components such as mtDNA, N-formyl peptides, ATP, 
TFAM, and mitochondrial lipids. These mitochondrial constituents 
also exert their respective effects, which are wide-ranging, on key 
inflammatory pathways (extensively reviewed by Nakahira et al.81). 
Aside from this non-selective release after uncontrolled cell death, 
several studies have suggested additional mechanisms such as 
necroptosis (or programmed necrosis)92. Blood transfusion-induced 
endothelial necroptosis was recently found to increase extracellu-
lar mtDNA as a potential mechanism to explain transfusion-related 
lung injury93. A recent study suggested that, during necroptosis, 
mitochondria were released before plasma membrane rupture and 
then phagocytosed by monocyte-derived macrophages or dendritic 
cells, triggering an inflammatory response as shown by cytokine 
production and cell maturation, respectively61. Thus, ingestion of 
intact mitochondria may represent a distinct uptake mechanism fol-
lowing necroptosis. In a separate study, platelets were also found 
to be a source for free extracellular mitochondria release and then 
to act as an endogenous substrate for bactericidal secreted phos-
pholipase A

2
IIA (sPLA

2
-IIA) leading to mitochondrial membrane 

hydrolysis, loss of mitochondrial structural integrity, and mtDNA 
release94. Intriguingly, Xin et al. found lower levels of mtROS pro-
duction when metformin was added to activated platelets, and this 
was associated with decreased extracellular mtDNA release95. The 
authors found lower complex I activity of the platelet mitochon-
drial respiratory chain and suggested this as a mechanism for the 
observed suppressed mitochondrial dysfunction.

Whether there is an active element in mtDNA release is an 
interesting point of consideration. Active cellular transfer of  

mitochondria from stromal cells to rescue stricken lung alveoli 
cells in acute lung injury has been demonstrated96. Extracellu-
lar vesicles are important modes of intercellular communication 
and comprise exosomes (endosomal) and microvesicles (plasma  
membrane-derived) and are directed by exocytosis. Both chromo-
somal DNA97,98  and mtDNA99,100 have been observed in extracellular 
vesicles; it has been suggested that the transfer of altered mtDNA 
between cells may play a role in Alzheimer’s disease and skeletal 
muscle diseases99,100. As described earlier, in patients with NASH, 
a greater percentage of mitochondria was found inside extracellu-
lar microparticles and a higher percentage of microparticles con-
tained mitochondria compared with lean subjects42. Furthermore, 
subjects with NASH had a higher level of oxidised mtDNA in 
microparticles. Further clarification is required on the concentration 
and significance of mtDNA in extracellular vesicles and whether 
this has different immunostimulatory effects compared with  
cell-free or surface-bound mtDNA. As previously mentioned, 
the pro-inflammatory effects of mtDNA are dependent on its  
oxidisation75,101. The highly oxidative extracellular milieu at sites 
of tissue inflammation in patients with chronic inflammatory dis-
ease may overwhelm anti-oxidant systems, further potentiating the 
inflammatory potential of DAMPs such as mtDNA5.

mtDNA degradation and clearance
Several well-described clearance mechanisms limit the pro- 
inflammatory nature of mtDNA. Autophagy as discussed ear-
lier is important102. Defective autophagy has been implicated in 
several chronic inflammatory human diseases, including Crohn’s 
disease103. A proportion of circulating DNA in the bloodstream 
appears to cross the kidney barrier and be excreted in the urine104. 
Indeed, mtDNA has been detected in the urine at elevated levels in 
patients with progressive acute kidney injury105. This may be due to 
the inflammatory state associated with this condition, the increased 
clearance with a disturbed kidney barrier, or both. Another possible 
mechanism of mtDNA clearance is phagocytosis by macrophages 
in a manner similar to the ingestion of the structurally similar bac-
terial DNA106. As described earlier, the outcome of phagocytosis 
of intact mitochondria may be pro- rather than anti-inflammatory; 
these divergent effects may also be dependent on the phenotype 
of the phagocytosing cells (for example, inflammatory versus pro-
resolution macrophages/monocytes, neutrophils, and red blood 
cells)61,93.

In general, non-host DNA in the circulation is digested in part by 
circulating nucleases, and mtDNA may be affected by a similar 
mechanism107. Intracellularly, DNases found in the autophagolyso-
some play a vital role in degrading mtDNA102,108. Oka et al. showed 
that cardiac-specific deletion of DNase II resulted in mtDNA accu-
mulation in cardiomyocytes and the development of heart failure102. 
In human umbilical vein endothelial cells, lysosomal DNases pro-
tect cells against inflammation from mtDNA damage induced by 
ox-LDL91. Here, small interfering RNA (siRNA) knockdown of 
DNase II amplifies the mtDNA–TLR9-mediated inflammatory 
response91. It is unclear whether nucleases have a similar action 
on mtDNA in the extracellular space or are relevant in the physi-
ological setting, especially when mtDNA is present in microvesi-
cles or housed within intact mitochondria, which protect against 
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DNase II. Intriguingly, DNase pre-treatment abolished renal mito-
chondrial injury that was observed after injection of mitochondrial 
debris (including mtDNA) in mice45. However, the precise role of 
DNase and its effect on the immunostimulatory effects of mtDNA 
is likely to be more complex, as illustrated by a recent study which 
showed that DNase II was required for TLR9 activation by bacterial 
genomic DNA109.

Conclusions: translational opportunities for mtDNA-
mediated inflammation
mtDNA contributes to inflammation at multiple levels when tissue 
or cellular homeostasis is perturbed. Damaged mtDNA released 
into the cytosol has a functional short-range effect on immediate 
“alarm” systems such as the inflammasome and NFκB. Uncon-
trolled release of mtDNA into the circulation in conditions with 
significant tissue injury generates a more systemic effect whilst 
de-regulation of local mitochondrial homeostatic mechanisms 
such as autophagy or mtROS detoxification contributes to organ- 
specific pathology as observed in the heart and liver. Failure of  
such mechanisms may also give rise to a more wide-ranging  
consequence (for example, in autoimmune diseases such as SLE).

Our review shows that mtDNA-mediated inflammation is impor-
tant and relevant to many human inflammatory diseases. However, 
this remains an underexplored field and more insights will likely 
emerge in the near future. The current evidence offers a rich realm 
of translational opportunities to target mtDNA-mediated inflamma-
tion. There are many plausible approaches, which include target-
ing cytosolic mtDNA release (for example, directly at MPT using 
cyclosporine or by specific mitochondrial anti-oxidant strategies, 
such as MitoQ10

10
 to reduce mtROS), augmenting clearance (for 

example, using autophagy activators or correcting factors leading 
to impaired autophagy), diverting the cellular response following 
mitochondrial damage (for example, induction of pro-apoptotic 
caspases), and reducing the inflammatory potential of mtDNA (for 
example, DNases to digest NET-bound mtDNA and reducing oxi-
dation of mtDNA).

Given that mtDNA can be measured and used as a biomarker, it 
offers a unique opportunity to stratify and identify individuals who 
may benefit from specific therapeutic targeting of downstream 
inflammation pathways (for example, TLR9, NLRP3, or STING 
pathways). As discussed earlier, there are numerous studies in 
sepsis, trauma, and acute single-organ injury that have already 
demonstrated that individuals with high mtDNA levels and TLR9 
expressions have worse prognosis. Therefore, there are clear groups 
in which stratification is useful. However, a number of challenges 
exist to its implementation as a biomarker, such as the variation 
in which mtDNA is measured (for example, serum versus plasma, 
mtDNA-specific PCR primers) and reported in the literature. Stand-
ardisation of these protocols, including the identification of “nor-
mal” and “abnormal” ranges, will be important prior to clinical use. 
Furthermore, many studies have failed to include clinically relevant 
predictive statistics; further studies reporting such statistics in a 
variety of inflammatory conditions are required.

In conclusion, multiple lines of data show that innate responses to 
mtDNA, which is similar to and evolutionarily derived from bac-
teria, are hard-wired into our biology and drive the development 
inflammation with pathologic consequences in many diseases.
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